Introduction to NMR

Lukáš Žídek

Outline

- Nuclei vs. electrons
- NMR spectrometer and NMR experiment
- Chemical shift, dipolar and J-coupling
- Relaxation in NMR spectroscopy
- Signal processing in NMR spectroscopy
- Two- and multi-dimensional NMR spectroscopy
- Structure and dynamics of molecules from NMR data

What is not covered:

- NMR of quadrupolar nuclei
- Solid-state NMR
- Magnetic resonance imaging

Nuclei vs. electrons

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

-

The same physics:

$$\vec{\mu} = \gamma \vec{I} = \frac{g}{2} \frac{Q}{m} \vec{I}$$
$$\vec{E} = -\vec{\mu} \cdot \vec{B}$$
$$\vec{\omega} = -\gamma \vec{B}$$

크

Nuclei vs. electrons

Fundamental differences

- electron is a simple particle, well described by QED
 - g = 2.00231930436146(56) from 2008 measurement
 - g = 2.00231930436328(152) from QED calculations
- proton is a complex particle
 - g = 5.585694713(46) from experiment
 - g = ? from theory (QCD)

Technical differences

- $\gamma(e^-) \approx 658 imes \gamma(p^+)$
 - lower frequencies of nuclei
 - \Rightarrow different hardware (radio waves vs. microwaves)
 - slower relaxation of nuclei (typically 10⁻²−10⁰ s)
 ⇒ more time for pulsed experiments
 - Iower sensitivity

Chemical differences

- few unpaired electrons in typical compounds
- 10⁰-10⁴ protons in organic/biochemical molecules

NMR spectrometer NMR experiment

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Magnetic moments in molecules

	S	$rac{10^{-9}\gamma}{ m rads^{-1}T^{-1}}$	%
e ⁻	1/2	-182.000	100
¹ H	1/2	0.277	99.98
¹³ C	1/2	0.067	1.1
¹⁴ N	1	0.019	99.6
¹⁵ N	1/2	-0.027	0.4
¹⁷ O	5/2	-0.036	0.04
¹⁹ F	1/2	0.252	100
³¹ P	1/2	0.108	100
¹²⁹ Xe	1/2	-0.075	24.4

quadrupolar (relax fast) rare isotopes (enrichment)

NMR sample outside magnet

in equilibrium (spherical symmetry)

NMR sample inside magnet

not in equilibrium (vertical force field)

Relaxation via coupling with molecular rotation

nuclear B spin flow of induced electrons field

< 17 >

3 1 4 3

reproduced from M. H. Levitt: Spin Dynamics

크

Polarization

Boltzmann distribution: $P(\theta) \propto e^{-\frac{E}{k_{\rm B}T}} = e^{\frac{\vec{\mu} \cdot \vec{B}}{k_{\rm B}T}} \Rightarrow M_z = \frac{N}{V} \frac{\mu^2 B}{3k_{\rm B}T}$ Precession (angular momentum in a field): $\vec{\omega} = -\gamma B$

Excitation

<ロト <回 > < 回 > < 回 > .

12/100

æ

Excitation

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

<ロト <回 > < 回 > < 回 > .

13/100

æ

Coherent evolution

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

14/100

크

Signal detection

reproduced from M. H. Levitt: Spin Dynamics

Non-equilibrium distribution of magnetic moments

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Relaxation via coupling with molecular rotation

nuclear B spin flow of induced electrons field

< 17 >

3.1

reproduced from M. H. Levitt: Spin Dynamics

크

Return to equilibrium

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Signal decay

reproduced from M. H. Levitt: Spin Dynamics

3 1 4 3

Chemical shift Dipolar coupling J-coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

23/100

크

< E

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

23/100

크

3 1 4 3

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

24/100

포 > 표

24/100

-

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

$$\omega = -\gamma \underbrace{(1 - \sigma)}_{\text{shielding}} B_0$$

$$\sigma = \sigma_{\text{isotropic}} + \sigma_{\text{anisotropic}}$$

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

27/100

크

Molecular tumbling in solution $\Rightarrow \langle \sigma_{anisotropic} \rangle = 0$

$$\Rightarrow \langle \sigma \rangle = \sigma_{\text{isotropic}}$$

Chemical shifts

Chemical shifts

Dipolar coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

31/100

æ

물 에 제 문 어

Dipolar coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

32/100

æ

·문→ ★ 문→

Dipolar coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

33/100

æ

물 에 제 문 어

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

34/100

æ

물 에 제 문 어

$$\nu(\theta) = \nu_0 + D(\theta)$$
$$D = -\frac{\gamma_1 \gamma_2 \mu_0 h}{8\pi^3 r_{12}^3} \left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right)$$

In isotropic solution:

$$\left\langle rac{3}{2}\cos^2 heta - rac{1}{2}
ight
angle_{ heta} = 0 \quad \Rightarrow \quad \langle D
angle_{ heta} = 0$$

35/100

크

★ E ► ★ E ►

A.

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

36/100

æ

문에 비용어

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

37/100

æ

물 에 제 문 어

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

38/100

æ

ヨト イヨト

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

39/100

æ

물 에 제 문 어

ð

$$\nu(\theta) = \nu_0 + D(\theta)$$
$$D = -\frac{\gamma_1 \gamma_2 \mu_0 h}{8\pi^3 r_{12}^3} \left(\frac{3}{2}\cos^2\theta - \frac{1}{2}\right)$$

In isotropic solution:

$$\left\langle rac{3}{2}\cos^2 heta - rac{1}{2}
ight
angle_{ heta} = 0 \quad \Rightarrow \quad \langle D
angle_{ heta} = 0$$

40/100

크

★ E ► ★ E ►

A.

Fermi contact interaction

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

41/100

크

-

Fermi contact interaction

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

42/100

$$E=-rac{2\mu_0}{3}\langleec{\mu}_{
m n}\cdotec{\mu}_{
m e}
angle\;|\psi(ext{inside nucleus})|^2$$

Does not depend on orientation (scalar product $\vec{\mu}_n \cdot \vec{\mu}_e$)

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019 43/100

J-coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Image: A mathematical states and the states and

▶ < ≣ >

44/100

æ

J-coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

45/100

æ

Э

J-coupling

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

46/100

æ

くヨ→

$$\nu = \nu_0 \pm J$$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

47/100

æ

Relaxation

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

48/100

크

Relaxation is essential for NMR

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

크

Relaxation limits NMR

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

reproduced from M. H. Levitt: Spin Dynamics

$$C(t) = \left\langle \frac{(3\cos^2\theta(t_0) - 1)(3\cos^2\theta(t_0 + t) - 1)}{4r^3(t_0)r^3(t_0 + t)} \right\rangle_{\text{all } t_0, \text{all molecules}} = \sum_i a_i e^{-t/\tau_i}$$

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

51/100

æ

3 1 4 3

Fluctuations of local fields

ť

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

52/100

 $\omega \rightarrow \omega \rightarrow \omega$

< 67 ►

Relaxation rates

$$\begin{aligned} R_2 &= 4\left(c^2 + d^2\right)\left(a_0\frac{\tau_0}{1 + (0\cdot\tau_0)^2} + a_1\frac{\tau_1}{1 + (0\cdot\tau_1)^2} + \cdots\right) \\ &+ 3\left(c^2 + d^2\right)\left(a_0\frac{\tau_0}{1 + (\omega_2\tau_0)^2} + a_1\frac{\tau_1}{1 + (\omega_2\tau_1)^2} + \cdots\right) \\ &+ 6d^2\left(a_0\frac{\tau_0}{1 + (\omega_1\tau_0)^2} + a_1\frac{\tau_1}{1 + (\omega_1\tau_1)^2} + \cdots\right) \\ &+ 6d^2\left(a_0\frac{\tau_0}{1 + ((\omega_1 + \omega_2)\tau_0)^2} + a_1\frac{\tau_1}{1 + ((\omega_1 + \omega_2)\tau_1)^2} + \cdots\right) \\ &+ d^2\left(a_0\frac{\tau_0}{1 + ((\omega_1 - \omega_2)\tau_0)^2} + a_1\frac{\tau_1}{1 + ((\omega_1 - \omega_2)\tau_1)^2} + \cdots\right) \end{aligned}$$

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

53/100

.

▶ < ≣ >

Small/flexible molecules relax slowly

$$\begin{aligned} R_2 &= 4 \left(c^2 + d^2 \right) \left(a_0 \frac{\tau_0}{1 + (0 \cdot \tau_0)^2} + a_1 \frac{\tau_1}{1 + (0 \cdot \tau_1)^2} + \cdots \right) \\ &+ 3 \left(c^2 + d^2 \right) \left(a_0 \frac{\tau_0}{1 + (\omega_2 \tau_0)^2} + a_1 \frac{\tau_1}{1 + (\omega_2 \tau_1)^2} + \cdots \right) \\ &+ 6d^2 \left(a_0 \frac{\tau_0}{1 + (\omega_1 \tau_0)^2} + a_1 \frac{\tau_1}{1 + (\omega_1 \tau_1)^2} + \cdots \right) \\ &+ 6d^2 \left(a_0 \frac{\tau_0}{1 + ((\omega_1 + \omega_2) \tau_0)^2} + a_1 \frac{\tau_1}{1 + ((\omega_1 + \omega_2) \tau_1)^2} + \cdots \right) \\ &+ d^2 \left(a_0 \frac{\tau_0}{1 + ((\omega_1 - \omega_2) \tau_0)^2} + a_1 \frac{\tau_1}{1 + ((\omega_1 - \omega_2) \tau_1)^2} + \cdots \right) \end{aligned}$$

small/flexible molecules \Rightarrow fast motions \Rightarrow short τ 's $\Rightarrow \omega_j \tau_i \ll 1$ $\Rightarrow \sum_i a_i \frac{\tau_i}{1 + (\omega_j \tau_i)^2} \rightarrow \sum_i a_i \tau_i = \overline{\tau}$ $\Rightarrow R_2 \rightarrow (7c^2 + 20d^2) \overline{\tau}$ (small)

• Image: A image:

54/100

Large rigid molecules relax rapidly

 R_2

 $\tau_0 = \frac{4\pi\eta}{3k_{\rm p}T}r^3$

$$= 4 \left(c^{2} + d^{2} \right) \left(a_{0} \tau_{0} + a_{1} \tau_{1} + \cdots \right)$$

$$+ 3 \left(c^{2} + d^{2} \right) \left(a_{0} \frac{\tau_{0}}{1 + (\omega_{2} \tau_{0})^{2}} + a_{1} \frac{\tau_{1}}{1 + (\omega_{2} \tau_{1})^{2}} + \cdots \right)$$

$$+ 6 d^{2} \left(a_{0} \frac{\tau_{0}}{1 + (\omega_{1} \tau_{0})^{2}} + a_{1} \frac{\tau_{1}}{1 + (\omega_{1} \tau_{1})^{2}} + \cdots \right)$$

$$+ 6 d^{2} \left(a_{0} \frac{\tau_{0}}{1 + ((\omega_{1} + \omega_{2}) \tau_{0})^{2}} + a_{1} \frac{\tau_{1}}{1 + ((\omega_{1} + \omega_{2}) \tau_{1})^{2}} + \cdots \right)$$

$$+ d^{2} \left(a_{0} \frac{\tau_{0}}{1 + ((\omega_{1} - \omega_{2}) \tau_{0})^{2}} + \cdots \right)$$

spherical rigid molecules \Rightarrow slow tumbling \Rightarrow long $\tau_0 \gg \tau_{i\neq 0} \Rightarrow$ $\Rightarrow \sum_{i} a_i \frac{\tau_i}{1 + (\omega_{i\neq 0}\tau_i)^2} \rightarrow 0, \sum_{i} a_i\tau_i \approx a_0\tau_0$ $\Rightarrow R_2 \rightarrow 4 (c^2 + d^2) a_0\tau_0$ (large)

55/100

Signal processing

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

56/100

57/100

Like in FM radio receiver:

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

58/100

æ

Fourier transformation

59/100

Ξ.

(문) (문

Lukáš Žídek

8th EFEPR School, Brno, Nov. 21, 2019

Fourier transformation of ideal signal.

60/100

크

→

Fourier transformation of cosine.

61/100

크

< E

Fourier transformation of sine.

62/100

æ

< ∃⇒

Three Larmor frequencies.

63/100

크

Phase is unknown

64/100

э.

문에 비원이

Acquisition is finite

Truncation artifact.

65/100

æ

< ∃⇒

Signal is digitized

66/100

æ

물 에 제 문 어

67/100

NMR signal is an audio signal

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

NMR spectrometer

2D, 3D (nD) NMR experiments

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

72/100

3 1 4 3

2D NMR experiment

(4) (3) (4) (4) (4)

73/100

æ

2D correlation via nuclear Overhauser effect

(日)

Heteronuclear spin echoes

75/100

크

< 注 → < 注

76/100

A B F A B F

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

77/100

(4) (3) (4) (4) (4)

Direct excitation of ¹³C or ¹⁵N

<日</td>

82/100

Basic principle:

Real example:

Heteronuclear 2D correlation

Advantage of 2D vs. 1D experiment

Example of a 5D experiment

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

87/100

Structure and dynamics from NMR data

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Information in the peak parameters

- Peak position (chemical shift) \longrightarrow (local) conformation
- Peak width —> dynamics (not affecting chemical shift)
- Peak area → quantity (for ideal signal)

Local conformation from chemical shift

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

Global fold from nuclear Overhauser effect

2D NOESY spectra

92/100

æ

ъ

3D NOESY-HSQC spectra

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

93/100

æ

- 王

Assignment needed

94/100

æ

3 1 4 3

Assignment needed

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

95/100

æ

< 2> < 2>

Protein backbone assignment

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

96/100

Relaxation rates from special experiments

D.M. Korzhnev et al. / Progress in Nuclear Magnetic Resonance Spectroscopy 38 (2001) 197-266

Image: A matrix

(4) (3) (4) (4) (4)

97/100

Relaxation rates: motions not affecting chemical shift

$$J(\omega) = \int_{0}^{\infty} e^{-t'/\tau_{i}} \cos \omega t' dt' = \frac{\tau_{i}}{1 + (\omega \tau_{i})^{2}}$$

$$R_{2} = 4 (c^{2} + d^{2}) \sum_{i} a_{i} \frac{\tau_{i}}{1 + (0 \cdot \tau_{i})^{2}}$$

$$+ 3 (c^{2} + d^{2}) \sum_{i} a_{i} \frac{\tau_{i}}{1 + (\omega_{2} \tau_{i})^{2}}$$

$$+ 6d^{2} \sum_{i} a_{i} \frac{\tau_{i}}{1 + (\omega_{1} \tau_{i})^{2}}$$

$$+ 6d^{2} \sum_{i} a_{i} \frac{\tau_{i}}{1 + ((\omega_{1} + \omega_{2}) \tau_{i})^{2}}$$

$$+ d^{2} \sum_{i} a_{i} \frac{\tau_{i}}{1 + ((\omega_{1} - \omega_{2}) \tau_{i})^{2}}$$

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

98/100

Chemical/conformational exchange

Lukáš Žídek 8th EFEPR School, Brno, Nov. 21, 2019

