Pulsed EPR spectroscopy with a focus on DEER (PELDOR)

Gunnar Jeschke ETH Zürich, Lab. Phys. Chem.

DEER: Data analysis

Now Billing

∑epr @eth

Interactions and the information that they provide

Name	Information
electron Zeeman	fingerprinting of radical type or metal coordination
hyperfine	distribution of the SOMO (reactivity) distance of protons from the center of spin density
nuclear Zeeman	identification of nuclei that give rise to hfi
nuclear quadrupole	binding situation of the nucleus for <i>I</i> > 1/2 (chemical shift is not available)
zero-field	fingerprinting of triplet type or metal coordination spin state for metal ions (low or high spin)
exchange	orbital overlap (important for electron transfer)
dipole-dipole	distances in the nanometer range (15 - 100 Å)

An overview of microwave bands and interactions

By separating interactions, pulsed EPR provides information lost by line broadening in CW EPR

• for electron group spin > 1/2 (more than one unpaired electron)

- most valuable source of EPR restraints on structure
- resolution limit depends on sample preparation

¹ mT corresponds to 28 MHz

Example: Measuring hyperfine couplings

Even if it's resolved, ...

sample courtesy Agnes Kütt University Tallin

Н

a more complicated experiment can make it simpler

 \bigoplus identity of the nuclei (¹H, ¹⁴N)

direct read-off of hyperfine couplings

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Pulsed EPR is a zoo of techniques

EPR spectra

- Fourier-transform EPR
- field-swept echo-detected EPR

Electron spin relaxation

- Hahn echo decay (T_2/T_m)
- Inversion recovery (*T*₁)

Hyperfine couplings nuclear Zeeman & nuclear quadrupole interactions

- ESEEM Sabine, Fri 9:00
- HYSCORE
- Davies ENDOR
- Mims ENDOR Marina, Thu 15:30
- ELDOR-detected NMR Daniella, Fri 11:00

Electron-electron couplings

- DEER/PELDOR
- RIDME
- SIFTER
- DQC-EPR

Fine print

- more techniques exist
- new ones are still coming up
- almost all of them fit into one of the four boxes

Free induction decay (FID) and Fourier transform EPR

Complex (quadrature) signal: $-M_y + i M_x$

Fourier transform

Motion of the magnetization vector without relaxation

Classical equation of motion

spin has, both, angular momentum J and a magnetic moment $\boldsymbol{\mu}$

$$\frac{d\vec{J}}{dt} = \vec{\mu} \times \vec{B}(t)$$

torque

 \overrightarrow{J} total angular momentum vector, $\overrightarrow{B}(t)$ includes static and oscillatory magnetic fields

as $\gamma \overrightarrow{J} = \overrightarrow{\mu}$ and $\overrightarrow{M} = \overrightarrow{\mu}/V$, we have

$$\frac{d\vec{M}}{dt} = \vec{M} \times \gamma \vec{B}(t)$$

and by expanding the cross product

$$\dot{M}_{x} = -\gamma B_{z}(t) M_{y} + \gamma B_{y}(t) M_{z}$$
$$\dot{M}_{y} = \gamma B_{z}(t) M_{x} - \gamma B_{x}(t) M_{z}$$
$$\dot{M}_{z} = \gamma B_{x}(t) M_{y} - \gamma B_{y}(t) M_{x}$$

Relaxation in the magnetization vector model

Relaxation is due to flips of individual spins

- \Rightarrow only phenomenological description possible in a classical picture
- \Rightarrow length of \dot{M} is not a constant of motion

Two types of relaxation just a reminder, Thomas Prisner talked about this

- longitudinal relaxation requires energy exchange with the environment, enthalpic, time constant T_1
- transverse relaxation reduces phase coherence of the ensemble, entropic, time constant T_2

Bloch equations with relaxation rotating frame

Homogeneous and inhomogeneous lines

I in the solid state, inhomogeneous broadening by anisotropic interactions is often dominant

Why a single pulse is not sufficient for solids

EPR absorption spectrum of a nitroxide (X band)

FT of the accessible part of the FID

... and the corresponding FID

• destructive interference of spin packets with different resonance offset dampens FID within dead time

FT EPR by FID detection possible only for:

- spectral widths < 100 MHz*
- line widths < \approx 3 MHz

*with modern arbitrary wavefunction generators: up to 800 MHz

The primary echo (Hahn echo)

Basics of phase cycling

The stimulated echo experiment

The inversion recovery pulse sequence

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Nutation and excitation bandwidth

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

• the Fourier transform of a boxcar function approximates the excitation profile for a *small* flip angle:

$$P(\Omega) \approx \frac{\sin(\Omega t_{\rm p}/2)}{\Omega t_{\rm p}/2}$$

Overcoming the microwave power limit to bandwidth

The power-bandwidth relation for rectangular monochromatic pulses

$$\mathsf{BW} \approx 1/t_{\rm p} \qquad t_{\rm p} = \beta/\omega_1 \qquad \Rightarrow \mathsf{BW} \approx \omega_1/\beta = g_x \,\mu_{\rm B} \,B_1/(\hbar\beta) \qquad \text{with} \quad B_1 \propto \sqrt{P_{\rm mw}}$$

the time available for spin excitation is of the order of T_2 (microseconds) or T_1 (milliseconds), whereas spectral width is of the order of 100 MHz ... 10 GHz, corresponding to $t_p = 10...0.1$ ns

Frequency-swept pulses

Accelerated frame picture

Adiabaticity

Well, nobody is perfect

$$Q = \omega_{\text{eff}} / | d\theta / dt$$

 for Q >> 1 the magnetization vector follows the effective field from +z to -z
 ⇒ *perfect* wideband inversion

Chirp echoes

X-band chirp FT EPR

Q-band chirp FT EPR resonator profile

0

Frequency [MHz]

100

- a spin packet Ω is excited after time fraction $f = (\Omega - \omega_{\text{start}})/B$
- for all packets to refocus at the same time, we must have

 $\tau' + (1-f)t_{p1} + ft_{p2} = \tau'' + (1-f)t_{p2}$ for all f, which gives $t_{p1} = 2t_{p2}$

• Fourier transformation of the echo gives the frequency-domain EPR spectrum

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Dipole-dipole coupling

$$\hat{H}_{\rm dd} = \frac{1}{r_{SI}^3} \frac{\mu_0 \hbar}{4 \pi} \gamma_S \gamma_I \left[\hat{\boldsymbol{S}} \cdot \hat{\boldsymbol{I}} - 3 \frac{1}{r_{SI}^2} \left(\hat{\boldsymbol{S}} \cdot \boldsymbol{r}_{SI} \right) \left(\hat{\boldsymbol{I}} \cdot \boldsymbol{r}_{SI} \right) \right]$$

Relevant terms

Orientation dependence

Pake pattern

To infer the distance r_{sl} , we must

- separate dipole-dipole coupling from stronger interactions
- get rid of the orientation dependence

Separation of the electron-electron coupling from other interactions

PANNIER M, VEIT S, GODT A, JESCHKE G, SPIESS HW, J. Magn. Reson. 2000, 142, 331

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

JESCHKE G et al. Appl. Magn. Reson. 2006, 30, 473

Separating the dipole-dipole interaction by a spin flip

original experiment by Salikhov, Milov, Shirov, and Tsvetkov

Ultimate resolution by a constant-time experiment

- if the total length of the pulse sequence changes, dipolar evolution is damped by relaxation
- for distances larger than ~3-4 nm, dipolar modulation is overdamped

Keep τ fixed, vary only *t*, pulse sequence has constant length

We trade sensitivity for resolution

Eliminating dead-time by the four-pulse DEER experiment

Why can we excite two nitroxide labels with two frequencies?

Information content of the DEER signal

• decay envelope depends on distance distribution: fast decay of modulation \Rightarrow broad distribution

Dipole-dipole interaction

$$\omega_{\rm dd} = \frac{1}{r^3} \frac{\mu_0}{4\pi h} g_1 g_2 \mu_B^2$$

Dipolar frequency

$$(\theta) = (1 - 3\cos^2\theta)\omega_{dd}$$

Form factor of an isolated spin pair

$$F(r,t) = \frac{V(t)}{V(0)} = 1 - \int_{0}^{\pi/2} \lambda(\theta) \left\{ 1 - \cos[2\pi v_{dd}(\theta)] \right\} \sin\theta d\theta$$

d

Data analysis by Fourier transformation

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Average distance is not the full information

Expectation:

bent, higher energy, lower population, smaller *r* stretched, min. energy, max. population, max. *r*

Experimental distance distribution

G. JESCHKE, A. KOCH, U. JONAS, A. GODT A, J. Magn. Reson. 155, 72-82 (2002)

G. JESCHKE et al. Appl. Magn. Reson. 30, 473-498 (2006)

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Basic mathematics

fit simulated dipolar evolution function S(t) = K P(r)Minimize $G_{\alpha}(P) = \|KP(r) - F(t)\|^2 + \alpha \|\frac{d^2}{dr^2}P(r)\|^2$ mean square deviation roughness of 2nd derivative regularization parameter α

Why regularization is required and how to do it

Don't forget to validate your data Don't forget to validate your data

PTBP1/EMCV-IRES(D-F) 85 kDa protein-RNA complex, protein double mutant 235R1/388R1

Form factor

Primary data

L curve

Validation

Distance distribution

Second opinion (DEERNet)

8th EF-EPR School on Advanced EPR, Nov 2nd-8th, 2019

Further reading & useful stuff on pulsed EPR

Product operator formalism and phase cycling

R.R. ERNST, G. BODENHAUSEN, A. WOKAUN, *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Oxford University Press, Oxford, 1987.

O. W. SØRENSEN, Progr. Nucl. Magn. Reson. Spectrosc. 21, 503-570 (1989).

Topics specific to pulse EPR

A. SCHWEIGER, G. JESCHKE, Principles of Pulse Electron Paramagnetic Resonance, Oxford University Press, Oxford, 2001.

Adiabatic & fast passage

J. BAUM, R. TYCKO, A. PINES, *Phys.Rev. A* 32, 3435–3447 (1985).

A. DOLL, G. JESCHKE, J. Magn. Reson. 280, 46-62 (2017)

Numerical computations

EasySpin, Spinach

Product operator computations & beyond

SpinDynamica

Signal processing

G. JESCHKE, Lecture notes, ETH Zürich epr.ethz.ch/education/messtechnik.html

(Pulsed) EPR lecture notes

G. JESCHKE, *Lecture notes, ETH Zürich* epr.ethz.ch/education.html

Further reading & useful stuff on DEER & related

General overview on techniques for distance distribution measurements

P. P. BORBAT, J. H. FREED, eMagRes, Wiley, Vol. 5, 465–494 (2017). *Dipolar Spectroscopy – Single-Resonance Methods* G. JESCHKE, eMagRes, Wiley, Vol. 5, 1459-1475 (2016). *Dipolar Spectroscopy – Double-Resonance Methods*

Biological applications

G. JESCHKE, Annu. Rev. Phys. Chem. 63, 419-446 (2012), DEER distance measurements on proteins
B. ENDEWARD, A. MARKO, V. P. DENYSENKOV, S. T. SIGURDSSON, T. F. PRISNER, Methods in Enzymology
564, 403-425 (2015) Advanced EPR Methods for Studying Conformational Dynamics of Nucleic Acids

G. JESCHKE, Emerging Topics in Life Science, 2, 9-18, (2018) The contribution of modern EPR to structural biology

Structure modelling based on distance distributions

G. JESCHKE, Proteins 84, 544-560 (2016)
G. HAGELUEKEN, D. ABDULLIN, O. SCHIEMANN, Methods in Enzymology, 563, 595-622 (2015) *mtsslSuite: Probing Biomolecular Conformation by Spin-Labeling Studies*G. JESCHKE, Protein. Sci. 27, 76-85 (2018)

MMM - A toolbox for integrative structure modelling

DeerAnalysis & MMM

epr.ethz.ch/software.html

deeranalysis.org

