ELDOR detected NMR (EDNMR)

Daniella Goldfarb Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, Israel

Chapter 17

Literature

Cox, N.; Nalepa, A.; Lubitz, W.; Savitsky, A., ELDOR-detected NMR: A general and robust method for electron-nuclear hyperfine spectroscopy? *J. Magn. Reson.* **2017**, *280*, 63-78.

8th EPR school, Brno, Czeck Republic, Nov. 17-25, 2019

How do we measure NMR frequencies ? Hyperfine spectroscopy

ESEEM	ENDOR	ELDOR detected NMR
Electron spin echo envelope modulation	Electron-nuclear double resonance	Electron-electron double resonance detected NMR
Single frequency	Double and triple frequencies	Double and triple frequencies
MW	MW RF (one or two)	Two MW or three

The energy level diagram for S=1/2, I=1/2

 $v_{13} + v_{12} = v_{23}$ EPR NMR forbidden $v_{\alpha} = v_{12} = v_{23} - v_{13}$ $v_{\beta} = v_{34} = v_{14} - v_{24}$

To first order

Allowed EPR $\Delta M_s = \pm 1$, $\Delta M_l = 0$

$$v_{13} = v + A/2$$

 $v_{24} = v - A/2$

Forbidden EPR Δ MS=±1, Δ M_I=±1

$$\nu_{14} = \nu - \nu_N$$
$$\nu_{23} = \nu + \nu_N$$

The EPR spectrum

 $v_{\beta} = v_{14} - v_{24}$

1 epr

Schosseler, P.; Wacker, T.; Schweiger, A., Chem. Phys. Lett. 1994, 224, 319-324.

5

The EDNMR spectrum – inhomogenously broadened EPR spectra, the EPR doublet is not resolved

Inhomogeneous broadening The hyperfine coupling is not resolved

6

The spin Hamiltonian

For the point dipole approximation

$$T_{\perp} = \frac{\mu_0}{4\pi h} g\beta_e \, \frac{g_n \beta_n}{r^3}$$

$$\hat{\mathbf{H}} = \mathbf{v}\hat{S}_z - \mathbf{v}_I\hat{I}_z + A\hat{S}_z\hat{I}_z + B\hat{S}_z\hat{I}_x$$

$$A = A_{||}\cos^2\theta + A_{\perp}\sin^2\theta$$

= $A_{iso} + T_{\perp}(3\cos^2\theta - 1)$

 $B = (A_{||} - A_{\perp}) \sin\theta \cos\theta$ $= 3T_{\perp} \sin\theta \cos\theta$

$$A_{\parallel}, \theta = 0^0$$
 $A_{\perp}, \theta = 90^0$

The hyperfine interaction : mixing of Zeeman states

Secular : ENDOR

 Pseudo-secular : ESEEM, ELDOR detected NMR non-secular can be neglected

$$\nu_{\alpha,\beta} = \left[\left(\pm \frac{1}{2}A + \nu_I \right)^2 + \left(\frac{1}{2}B \right)^2 \right]^{1/2}$$

Nuclear frequencies:

$$v(m_S) = \sqrt{(v_I + m_S A)^2 + (m_S B)^2}$$

 $v_I = -g_n \mu_N B_0 / h$ $m_S = \pm 1/2$

$$v_{I} = v_{N}$$
 = nuclear Larmor freq

The EPR spectrum

9

Orientation dependence

The intensity of the forbidden transitions are orientation dependent, when B=0 they are 0 -Marepr

Line intensities in EDNMR

The EDNMR experiment creates holes in the broad EPR spectrum.

 $I_f = \sin^2 \eta$ The signal intensities ∞ depth of holes, h.

 $I_a = \cos^2 \eta$

 $\beta_f = \omega_1 t_{HTA} (I_f)^{1/2} = \beta_0 (I_f)^{1/2}$ the flip angle of the HTA pulse (forbidden transition)

$$\omega_1 = g_e \mu_e B_1 / \hbar$$
 The mw amplitude

 $\beta_0 = \omega_1 t_{HTA}$ The flip HTA flip angle for the allowed transition

 $h = 1 - I_a \cos(\beta_0 (I_f)^{\frac{1}{2}}) - I_f \cos(\beta_0 (I_a)^{\frac{1}{2}})$

For
$$I_f / I_a < <1$$
 and for very small $I_f \ \beta_0 (I_f)^{\frac{1}{2}} \ll 1$,
 $h \approx 1 - \cos\left(\beta_0 (I_f)^{\frac{1}{2}}\right) \approx 1 - 1 + \frac{1}{4} \beta_0^2 I_f \propto I_f$

Schosseler, P.; Wacker, T.; Schweiger, A., *Chem. Phys. Lett.* **1994**, *224*, 319-324.

1~~epr

The choice of spectrometer frequency

High field – first order expressions

When eso

EDNMR at W-band , Mn(II)ADP

lacksquare Narrow central hole can be obtained by applying a weak HTA pulse such that $\omega_1 T_{
m m} \ll 1$

- □ Same holds for the EDNMR lines (they can be narrower than the central hole)
- □ Selective detection pulses , with the smallest possible bandwidth are desired (long pulses)
- □ The wider the integration window, the better the resolution.
- □ It is recommended to acquire full echo (or FID) transients and carry out the integration postmeasurement such that the optimum SNR and resolution can be achieved.

Resolution often comes at the expense of SNR

Improving sensitivity

We change the frequency of the HTA pulse randomly

F. Mentink-Vigier, et al, J. Magn. Reson., 236 (2013) 117-125.

Effect of detection pulses and integration window

EDNMR for I=1, ^{14}N

 $\left|\beta,-1\right\rangle$

 $|\beta,0\rangle$

The first-order expressions for the ¹⁴N nuclear frequencies for $A > 2\omega_{l}$, are as follows: $\omega_{sq1}^{\alpha} = 2\pi v_{sq1}^{\alpha} = A/2 - \omega_{l} - 3P/2$ $\omega_{sq2}^{\alpha} = 2\pi v_{sq2}^{\alpha} = A/2 - \omega_{l} + 3P/2$ $\omega_{dq}^{\alpha} = 2\pi v_{dq}^{\alpha} = A - 2\omega_{l}$ $\omega_{sq1}^{\beta} = 2\pi v_{sq1}^{\beta} = A/2 + \omega_{l} - 3P/2$ $\omega_{sq2}^{\beta} = 2\pi v_{sq2}^{\beta} = A/2 + \omega_{l} + 3P/2$ $\omega_{dq}^{\beta} = 2\pi v_{dq}^{\beta} = A + 2\omega_{l}$

Quadrupole splitting $P = \frac{e^2 q Q}{4\hbar} (3cos^2\theta' - 1\theta')$ is the angle between the extremal magnetic field and the principal direction of the quadrupole tensor.

W-band EDNMR nitroxide spin probe

 $\nu^{lpha}_{sq,1}$

40

sq,2

60

 $m_1 = -1$

120

 \mathcal{V}^{lpha}_{dq} A(m_I=0)

100

80

 Δv / MHz

Nitroxide labeled polyethylene oxide, PEO-NO, in 3% F127 micelles in $D_2O/glycerol-d_8$ (7:3)

Strong coupling, hyperfine splitting resolved

More nitroxide W- band EDNMR – high resolution

A. Nalepa, K. Moebius, W. Lubitz and A. Savitsky, J. Magn. Reson., 2014, 242, 203-213

"home pr

$$\omega_{sq1}^{\alpha} = 2\pi v_{sq1}^{\alpha} = A/2 - \omega_l - 3P/2$$
$$\omega_{sq2}^{\beta} = 2\pi v_{sq2}^{\beta} = A/2 + \omega_l + 3P/2$$

You can determine P, the quadrupole interaction

R1-H₁₆ in 2-propanol-H₈

R1-D₁₆ in 2-propanol-H₈

R1-D₁₆ in 2-propanol-D₈

"mepy

EDNMR of ¹⁴N – weak coupling case

EDNMR : ¹⁷O examples

Cox et al, Mol. Phys., 111,2788–2808, 2013

Mepr

Reduced H₅PV₂Mo₁₀¹⁷O₄₀ Polyoxometalate

Kaminker, et al Chemistry – a European Journal. 16, 10014-10020 (2010).

HYSCORE of [PV(V)V(IV) Mo₁₀¹⁷O₄₀]⁶⁻

- epr

Triple resonance experiments - providing correlations

The 2D EDNMR pulse sequence

correlate nuclear frequencies that belong to different m_s manifolds and tells is different nuclei are coupled to the same paramagnetic center

Kaminker, et al, J. Magn. Reson., 2014, 240, 77-89; A. Potapov et al, J. Chem. Phys., 2008, 128

2D ELDOR for nitroxide

(

1 epi

The THYCOS (Triple resonance HYperfine Sublevel COrrelation Spectroscopy)

Potapov, et al , J. Chem. Phys. 2008, 128 (5).

mepr

"mapr

"home pr

32

"mapp

THYCOS of the Mn-¹⁵N₅-ATP sample

Non-epy

