

Transient EPR

Gambarelli Serge

Summary

- General considerations
- Instrumentation
- Major difference compared to standard EPR: non equilibrium polarisation
 - triplet states
 - radical pairs
 - CIDEP of free radicals
- Advanced EPR

General considerations, a little history

In the beginning... EPR study of photogenerated systems! Species generated are generally paramagnetic, for instance photosynthesis = "garden of Eden of EPR". Life time tends to be short compared to EPR coupling: consequently need in situ generation.

Simplest method: EPR under illumination, study of steady states. Possible to observe "very slow" kinetics evolution.

Major observation: if we try to observe **photogenerated** species with a good time resolution (less than 10-100 μs), completely new phenomena observable =>non-Boltzman polarisation

Photolysis vs Radiolysis

Unusual line phase

H₃C

H₃C

Madden, Taniguchi, JACS, 1991, 113, 5541

Simple example

Photochemical reaction in solution

Main points :

- line narrowing
- unusual emission/absorption pattern
- centrosymetric spectrum
- rapid intensity decrease

Time resolution of any spectroscopy

Basic principle: in spectroscopy, lifetime limits the resolution of observation

General idea: to measure energy (frequency) with high precision, we must measure the system for a long time (most evident with an FID measurement).

Time resolution of EPR spectroscopy

Application to EPR: For g=2 species, 2.8 MHz correspond to 1 G

Difficult to detect small hyperfine species (1 – 10 G) with rapidly decaying species Quite easy to detect ZFS of triplet with D around 100 G

N.B. these numbers correspond to the theoretical maximum time resolution. In practise, time resolution can be much worse due to instrumental/practical constraints.

Advanced EPR sequences (e.g. HYSCORE, pENDOR) last at least several µs.

Practical issues

- Sample degradation (bleaching) altered sample
- No field modulation (too slow)

sensitivity loss for CW

• Laser repetition frequency **mathequency** sensitivity loss for pulsed EPR

Basic setup

UV light (266 nm), liquid sample, CW EPR

For visible wavelengths, easier to use optical fiber

9

How to acquire a 2D (time, B) spectrum

Major limitation: impossible to rapidly change magnetic field. Even rapid scan methods are too slow.

First acquisition mode: constant B

First acquisition mode: constant B

Second acquisition mode

Second acquisition mode

- Only possible with pulsed measurement mode.
- Narrow species only.
- Problem if the signal is broad (triplet...): only measures a small part at a time.
- Especially good for systems with numerous narrow lines (multiplex advantage).

Intensity of an EPR transition

In (EPR) spectroscopy, intensity of a transition between two levels is proportional to:

- transition probability (quantum mechanics)
- population difference between these two levels (cf. Curie's Law)

In absence of saturation, polarisation rather low. Line always in emission (without lock-in)

$$r = \frac{P_h}{P_l} = e^{-\Delta E/kT} = e^{-g\mu B/kT}$$

Classical methods to increase population difference:

- increase static magnetic field
- decrease temperature

Population difference in EPR: Room temperature, X band, g=2, r = 0.9985 4 K, X band, g=2, r = 0.892 4 K, W band, g=2, r = 0.32 In photogenerated species, non-Boltzmann populations with huge polarisation

If non-Boltzmann population, return to equilibrium with characteristic time T_1 (cf. inversion recovery experiment in pulsed EPR)

General overview (simple case!)

o.int : other interactions (Zeeman, hyperfine...) in the hamiltonian

Polarization in transient EPR is the result of all these processes Spin states have a major impact!

Triplet /Singlet states

$$H = J(S^{2} - 3/2) + SDS + Ze_{A} + Ze_{B}$$

= J(S^{2} - 3/2) + D(S_z² - S²/3) + E(S_x² - S_y²) + Ze_{A} + Ze_{B}

Singlet and triplet states well isolated from each other

Triplet /Singlet states

If J and D strong enough, we can work only in the triplet state

$$H = D(S_{z}^{2} - S^{2}/3) + E(S_{x}^{2} - S_{y}^{2}) + g\beta BS_{z}$$

= $D(S_{z}^{2} - S^{2}/3) + E(S_{x}^{2} - S_{y}^{2}) + \omega S_{z}$
$$H = \begin{pmatrix} D & 0 & E \\ 0 & 0 & 0 \\ E & 0 & D \end{pmatrix} -2D/3$$

$$Z = T_{0} \qquad E_{n} = -2D/3$$

$$X = (T_{+1} - T_{-1})/2^{0.5} \qquad E_{n} = D/3 - E$$

$$Y = (T_{+1} + T_{-1})/2^{0.5} \qquad E_{n} = D/3 + E$$

Zero field eigenfunctions and eigenvalues (T₀, T₊₁, T₋₁ are the high-field eigenfunctions)

TR-EPR: Prototypical example

Without modulation, and after light excitation

- unusual sign patterns
- patterns differ from each other

But basically the same compounds (complex vs isolated) Note that D and E are **(nearly)** the same!

Why is polarisation so different?

Di Valentin, ..., Möbius, Chem Phys Lett, 1996, 248, 434

Polarisation from spin orbit ISC

ZFS << Zeeman << J

21

Spin orbit ISC rules

Spin orbit ISC efficiency is not the same with X Y Z states (0 field) We observe the "projection" of these populations on high field functions $T_{+1}T_0T_{+1}$ (see Budil and Thurnauer, BBA, 1991, 1057, 1)

Polarisation from RP ISC

ZFS << Zeeman << J

ZFS << Zeeman << J

Same phenomena with more complex systems: Singlet Fission

Weiss, ..., Behrends, Nature Physics, 2017, 13, 176

Singlet fission

General overview (simple case!)

o.int : other interactions (Zeeman, hyperfine...) in the hamiltonian

Polarization in transient EPR is the result of all these processes Spin states have a major impact!

A key intermediate

Photogenerated Radical pair (RP)

A radical pair can be "created"

- in a singlet state
- in one of the triplet states

$$H = J(S^{2} - 3/2) + SDS + Ze_{A} + Ze_{B}$$

= J(S^{2} - 3/2) + D(S_{z}^{2} - S^{2}/3) + E(S_{x}^{2} - S_{y}^{2}) + Ze_{A} + Ze_{B}

- Exchange interaction J (exponential decay with r)
- Dipolar interaction (1/r³ decay)
- Different resonance frequencies (g and hyperfine included)

RP Hamiltonian

We neglect dipolar interaction (for the moment)

Triplet-singlet functions are eigenfunctions of H (S good quantum number) if $|J| >> |\Delta|$ Direct product functions are eigenfunctions of H if $|J| << |\Delta|$ Singlet-triplet functions mixed if $|J| \approx |\Delta|$

В A B₀

 T_1 systems easy to guess!

 $\beta_{\text{A}}\beta_{\text{B}}$

 T_0 / S_0 systems

With dipolar interaction

We can add ZFS as a first order perturbation

RP ISC

 $|\mathsf{J}| >> |\Delta|$

$$\begin{split} \Psi(0) &= \mathsf{T}_0 \qquad (\text{from a photochemical reaction}) \\ &|\mathsf{J}| << |\Delta| \\ &\Psi(t) &= (\alpha_A \beta_B \ e^{-i\Delta t} + \beta_A \alpha_B \ e^{i\Delta t})/2^{0.5} \qquad \Psi(t) &= \cos(\Delta t) \ \mathsf{T}_0 - \mathrm{i} \ \sin(\Delta t) \ \mathsf{S}_0 \end{split}$$

This is the same result, just written in two different bases!!

- Even a pure singlet (triplet) state takes on a triplet (singlet) nature after a period of time (ISC).
- Recombination to a triplet state with lower energy is possible when the "triplet nature" is important.
- Populations in the direct product basis do not change.

General overview (simple case!)

o.int : other interactions (Zeeman, hyperfine...) in the hamiltonian

Polarization in transient EPR is the result of all these processes Spin states have a major impact!

Model systems: J, D... well defined

These phenomena are difficult to study for (flexible) systems in liquid state. J, ZFS change rapidly with the distance (and time): complex simulations needed for quantitative results.

Solution: use a study rigid system!!

Large body of work to develop models for (artificial) photosynthesis processes!

(RP)ISC vs Field (I)

(RP)ISC vs Field (II)

(RP)ISC vs Field (III)

Chemically Induced Dynamic Electron Polarization (CIDEP)

- What is the residual polarization of radicals when they no longer interact with each other in the liquid state?
- Formally, prevent coupling between centres in radical pair (increase distance) and see what happens
- In reality, re-encounters play a significant role, because what happens in the intermediate regime (and the kinetics of it) is very important.
- Detailed quantitative computations are a nightmare.

CIDEP: Triplet versus Radical Pair mechanism

RPM

8th BRNO EFEPR SCHOOL

Forbes, Photochem Photobiol, 1997, 65, 73

CIDEP: naive picture

$$T_{1} = \alpha_{A}\alpha_{B}$$

$$T_{0} = (\alpha_{A}\beta_{B} + \beta_{A}\alpha_{B})/2^{0.5}$$

$$T_{-1} = \beta_{A}\beta_{B}$$

$$S_{0} = (\alpha_{A}\beta_{B} - \beta_{A}\alpha_{B})/2^{0.5}$$

42

(RPM) CIDEP: cornerstone

CIDEP: density matrix analysis

During RP ISC (T_0 initial state):

 $\rho(t) = \exp(-iHt) \rho(0) \exp(iHt)$ $H = \begin{pmatrix} \Delta & 0 \\ 0 & -\Delta \end{pmatrix}$

$$\rho(t) = 0.5 \begin{pmatrix} +1 & e^{-2i\Delta t} \\ e^{2i\Delta t} & +1 \end{pmatrix}$$

Again simple (RP) ISC does not change the population

time

 $\rho(t) = \exp(-iHt_J) \exp(-iHt_\Delta) \rho(0) \exp(iHt_\Delta) \exp(-iHt_J)$

$$\rho(t) = 0.5 \begin{pmatrix} a_{00} & a_{10} \\ a_{01} & a_{11} \end{pmatrix}$$

 $a_{00} = 1 + \sin(2Jt_J) \sin(2\Delta t_\Delta)$ $a_{11} = 1 - \sin(2Jt_J) \sin(2\Delta t_\Delta)$

Populations change in this model!

- sign of J and D matter!
- time dependence
- same method with S₀

Forbes, Photochem Photobiol, 1997, 65, 73

Advanced EPR with transient species

Classical pulsed EPR sequences and double resonance methods can be used.

Transient species are generated following a laser flash

Take note of:

• T

- Laser repetition time
- A/E features

Advanced EPR with transient species

Di Valentin, ..., Möbius, Chem Phys Lett, 1996, 248, 434

Lentzian, ..., Lubitz, BBA, 2003, 1605, 35

A complete (and complex) example

Electron distribution changes

- D changes sign from P1 to P2
- D principal axis changes
- Populated levels change

Richert, Tait, Timmel, JMR, 2017, 280, 103

A complete (and complex) example

- D principal axis changes
- Hyperfine coupling reduced

Richert, Tait, Timmel, JMR, 2017, 280, 103

Thanks for your attention!

www.eprschool.ceitec.cz

