

Piotr Pietrzyk

Jagiellonian University in Krakow, Poland pietrzyk@chemia.uj.edu.pl

www.eprschool.ceitec.cz

gallery of heterogeneous materials with reduced dimensionality

surface complexes – symmetry and speciation

heterogeneity of surface and the presence of heteroleptic ligands gives rise to low symmetry and pronounced speciation (distribution of EPR parameters, strain effects) resulting in complex EPR spectra

chemical species in disordered systems detected with EPR

EPR profits

1. EPR spectra of anisotropic systems

isotropic and anisotropic spectra powder systems angular dependancy of g factor symmetry of EPR spectrum

2. Extra features of powder EPR spectra of anisotropic systems

- 3. Low-symmetry effects
- 4. Local inhomogeneity strain effects
- 5. Local symmetry probes

EPR spectra of anisotropic systems

isotropic spectra

Isotropic = "same in all directions"

- In fluid solution a molecule can tumble rapidly, and
- presents an "average" to the external magnetic field direction.
- An "average (or isotropic) response is detected,
- provided that the tumbling is fast compared to the frequency of the experiment.

 $H = \hbar^{-1}g\mu_B(B_xS_x + B_yS_y + B_zS_z)$

Cu(acac)₂ solution spectrum

note that linewidths are not constant

Cu(acac)₂ solution spectrum

for a spherical particle of radius r

 $\tau_R = \frac{4\pi r^3 \eta}{3kT}$

J. Chem. Phys., 33, 1094, (1960), 44, 154, (1966); 44, 169, (1966)

frozen solution "powder" spectrum

anisotropic spectra

• In a solid sample molecular

٠

remains.

motion is usually restricted,

often only vibrational motion

ideally stochastic distribution is ٠ expected.

$$\boldsymbol{H} = \hbar^{-1} \, \boldsymbol{\mu}_{\boldsymbol{B}} \boldsymbol{B}^{T} \boldsymbol{\cdot} \boldsymbol{g} \boldsymbol{\cdot} \boldsymbol{S}$$

$$\boldsymbol{H} = \hbar^{-1} \,\mu_{B}(g_{xx}B_{x}S_{x} + g_{yy}B_{y}S_{y} + g_{zz}B_{z}S_{z})$$

preparation of a sample in a "powder" form

- 1) The paramagnetic must be diluted without being contaminated. Dilution must be obtained at the molecular level.
- 2) The orientation of paramagnetic particles in space must be completely stochastic. The solid phase must be obtained in a form sufficiently fine to avoid the presence of macrocrystalites. In the case of frozen solutions, these must form a glass.
- 3) The random orientation of the paramagnets must be tested by rotating the sample in EPR cavity of about 20° and repeating the measurement. If the two spectra are identical, the sample can be considered as a powder one.

powder-like systems for EPR measurements

preparation of a sample in the form of glass "powder"

A first own		Glassing Agents			
Components	Ratio A:B:C	Pure Substance			
hydrocarbon 3-methylpentane/isopentane	1:1	3-methylpentane methylcyclopentane	sulfuric acid phosphoric acid	sugar (.4 M sucrose) triethanolamine	
isopentane/metnyicycionexane	1:0	paramin oil (Nujoi)	etnanoi	2-methyltetranydroruan	
methylcyclopentane/methylcyclonexane	1:1	isopentane	Isopropanoi	di-n-propyl etner	
3-methylpentane/isopentane	1:2	methylcyclohexane	1-propanol	decalin	
alcohol		isooctane	1-butanol	triacetin	
ethanol/methanol	4:1, 5:2, 1:9	boric acid	glycerol	toluene	
isopropanol/isopentane	3:7				
ethanol/ispopentane/diethyl ether	2:5:5				
isopentane/n-butanol	7:3	ba	sed on R. S. Drago, Physica	al methods for chemists, 1992	
isopentane/isopropanol	8:2				
diethyl ether/isooctane/isopropanol (or ethanol)	3:3:1				
diethyl ether/isopropanol (or ethanol)	3:1				
diethyl ether/toluene/ethanol	2:1:1				
butanol/diethyl ether	2:5				
aromatic					
toluene/methylene chloride	1:1 or excess toluene				
toluene/acetone	1:1 or excess toluene				
toluene/EtOH or MeOH	1:1 or excess toluene				
toluene/acetonitrile	1:1 or excess toluene				
toluene/chloroform	1:1 or excess toluene				
water				Α.Α.	
water/propylene glycol	1:1	8 th JU			
water/glycerol	4:1 to 1:4			EFEP	
water/(poly)ethylene glycol	4:1 to 1:4			SCHOOL	

partially-oriented samples

more details on partially oriented powders: F. E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, 1992.

orientation-dependent EPR spectrum of monocrystal

$$g_{eff}^{2} = g_{ii}^{2} \cos^{2} \theta + g_{jj}^{2} \sin^{2} \theta + 2g_{ij}^{2} \sin \theta \cos \theta$$

4. calculate the principal components of g-tensor (g_{xx}, g_{yy}, g_{zz}) – and orientation of the g-frame with respect to the crystal frame

Z

$$H = \hbar^{-1} \mu_{\rm B} [g_{\perp} B_{\rm x} S_{\rm x} + g_{\parallel} B_{\rm z} S_{\rm z}]$$
$$H = \hbar^{-1} \mu_{\rm B} B [g_{\perp} S_{\rm x} \sin \theta + g_{\parallel} S_{\rm z} \cos \theta]$$

calculation of matrix elements H_{ii}

 $\langle \alpha | H | \alpha \rangle = 1/2 \mu_{\rm B} B g_{\parallel} \cos \theta \qquad \langle \alpha | H | \beta \rangle = 1/2 \mu_{\rm B} B g_{\perp} \sin \theta$ $\langle \beta | H | \beta \rangle = -1/2 \mu_{\rm B} B g_{\parallel} \cos \theta \qquad \langle \beta | H | \alpha \rangle = 1/2 \mu_{\rm B} B g_{\perp} \sin \theta$

calculation of eigenvalues of H_{ij} (E)

$$\mathbf{\alpha} \qquad \mathbf{\beta} \\ \mathbf{\alpha} \qquad \begin{bmatrix} 1/2\mu_B Bg_{\parallel} \cos\theta - E & 1/2\mu_B Bg_{\perp} \sin\theta \\ 1/2\mu_B Bg_{\perp} \sin\theta & -1/2\mu_B Bg_{\parallel} \cos\theta - E \end{bmatrix}$$

$$g = egin{array}{c} g_{\perp} & & & \\ g_{\perp} & & & \\ g_{\parallel} & & &$$

 $S_{\rm x}|\pm 1/2\rangle = \frac{1}{2}|\mp 1/2\rangle$

angular dependency of g factor

 $(1/2\mu_{\rm B}Bg_{\parallel}\cos\theta - E) (-1/2\mu_{\rm B}Bg_{\parallel}\cos\theta - E) - (1/2\mu_{\rm B}Bg_{\perp}\sin\theta)^2 = 0$

$$E_{1,2} = \pm 1/2\mu_{\rm B}B(g_{\parallel}^2\cos^2\theta + g_{\perp}^2\sin^2\theta)^{0.5}$$

$$\mathbf{h}\mathbf{v} = E_2 - E_1 = \mu_B B(g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta)^{0.5}$$
$$\mathbf{h}\mathbf{v} = \mu_B B g(\theta)$$
$$g(\theta) = (g_{\parallel}^2 \cos^2 \theta + g_{\perp}^2 \sin^2 \theta)^{0.5}$$

angular dependency of g factor

randomly oriented systems

powder and frozen solution patterns

fraction of crystallites oriented within the solid angle θ and $\theta + d\theta$ with respect to the magnetic field **B**

randomly oriented systems

John A. Weil, James R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2007 John Wiley & Sons, Inc.

angular dependency for axial symmetry

angular dependency for axial symmetry

absorption profiles for axial and rhombic symmetry

linewidth effects

effect of anisotropy in g-values

effect of anisotropy in g-values

"road maps"

resonant field B_{res} of powder sample

symmetry – EPR spectrum relationship

anisotropy of g- and A-tensors

$$g = \begin{vmatrix} g_{xx} & & \\ g_{yy} & & \\ g_{zz} \end{vmatrix} A = \begin{vmatrix} A_{xx} & & \\ A_{yy} & & \\ A_{zz} \end{vmatrix}$$
anisotropy of hyperfine interaction
$$S = 1/2 \quad I \neq 0$$

$$B_{res} = \frac{h v_0}{g\mu_B} \left(\frac{Km}{g\mu_B} \right)$$

$$gK = \left[\left(g_{xx}^2 A_{xx}^2 \cos^2 \phi + g_{yy}^2 A_{yy}^2 \sin^2 \phi \right) \sin^2 \theta + g_{zz}^2 A_{zz}^2 \cos^2 \theta \right]^{\frac{1}{2}}$$

anisotropy of hyperfine interaction

point symmetry vs. EPR symmetry

Crystalographic system	Bravais cell	Point symmetry	EPR symmetr	ry Constraints
Triclinic		C ₁ , C _i	Triclinic	$g_{ij} \neq 0 \text{ i } g_{xx} \neq g_{yy} \neq all \text{ non-coincident} \\ g_{zz}; A_{xx} \neq A_{yy} \neq A_{zz} \alpha \neq \beta \neq \gamma \neq 0^{\circ}$
Monoclinic		C_2, C_s, C_{2h}	Monoclinic	$g_{xz} = g_{yz} = g_{zx} = g_{zy} = $ $0 i g_{xx} \neq g_{yy} \neq g_{zz}; A_{xx}$ $\neq A_{yy} \neq A_{zz}$ one axis of g and one of A coincident
	•	C ₃ , S ₆	Axial non-collinear	As for C_2 i $g_{xx} = g_{yy}$ $\neq g_{zz}, g_{xy} = -g_{yx};$ $A_{xx} = A_{yy} \neq A_{zz}$ <i>only</i> g_{zz} <i>and</i> A_{zz} <i>coinciden</i>
Trigonal		D_{3}, C_{3v}, D_{3d}	Axial	$g_{xy} = g_{yx} = 0 \text{ i } g_{xx} = all$ $g_{yy} \neq g_{zz} \qquad all$ $A_{xx} = A_{yy} \neq A_{zz} \qquad coincident$
Tetragonal		$\frac{C_{4}, S_{4}, C_{4h}}{D_{4}, C_{4v}, D_{2d}, \dots}$	Axial non-colline Axial	$\begin{array}{c} as for C_3 \\ as for D_3 \end{array}$
Hexagonal	120°	C ₆ , C _{3h} , C _{6h} , D ₆ , C _{6v} , D _{3h} , D _{6h}	Axial non-colline Axial	ear as for C ₃
Orthorombic		D_2, C_{2v}, D_{2h}	Rhombic	As for C_2 i $g_{xy} = g_{yx}$ all = 0 coincident
Regular		$\mathbf{T}, \mathbf{T}_{\mathrm{h}}, \mathbf{O}, \mathbf{T}_{\mathrm{d}}, \mathbf{O}_{\mathrm{h}}$	Isotropic	As for D_3 i $g_{xx} = g_{yy}$ all = g_{zz} ; $A_{xx} = A_{yy} = A_{zz}$ coincident

F. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier Amsterdam, 1992

EPR symmetry

EPR symmetry

off-axis turning points

For some combinations of the principal values of g_{ii} and A_{ii} , owing to intricate relationship of $B_{res}(\theta, \phi)$, stationary points and therefore EPR lines may arise, which do not correspond to field orientations along the principal axes of g and A

$$\left(2A_{i}^{2} - \frac{h vA_{i}}{m}\right) < \left(\frac{g_{i}^{2}A_{i}^{2} - g_{j}^{2}A_{j}^{2}}{g_{i}^{2} - g_{j}^{2}}\right) < \left(2A_{j}^{2} - \frac{h vA_{j}}{m}\right)$$

regular features $\theta = 0$ extra, off-axis features $\theta = 90^{\circ}, \phi = \phi_{xy}$ $\theta = 90^{\circ}, \phi = 0^{\circ}$ $\theta = \theta_{yz}, \phi = 90^{\circ}$ $\theta = \theta_{yz}, \phi = 90^{\circ}$ $\theta = \phi = 90^{\circ}$ $\theta = \theta_{xz}, \phi = 0^{\circ}$

I. V. Ovchinikov, V. N. Konstantinov, J. Mag. Res. 1978, 32, 179

analysis of angular effects

molecular complexes of Cu(II) – glass spectra

molecular complexes of Cu(II) – glass spectra

chemical vapor deposition in zeolite ZSM-5 (Al, I = 5/2)

Magnetic field / mT

 $Zn(II) - {}^{17}O^{17}O^{-}$ line $m_{l} = 5$

all regular resonances

low symmetry complexes

Eur. J. Inorg. Chem. 2016, 2357-2376

measuring low symmetry

view perpendicular to mirror plane

non-coincidence of g- and A-tensor principal axes

$$B_{res} = \frac{hv_0}{g\mu_B} - \frac{Km}{g\mu_B} \qquad s = 1/2 \qquad I \neq 0$$

$$g_{VV} y \stackrel{v}{} \stackrel{v}{} \stackrel{A_{ZZ}}{} \qquad g_{VV} \stackrel{x}{} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{x}{} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{x}{} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{x}{} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{g_{ZZ}}{} \qquad g_{VV} \stackrel{g_{ZZ}}{} \qquad g_{ZZ} \stackrel{g$$

non-coincidence of g- and A-tensor principal axes

for F = 1 the resonant field becomes a function of g_{xx} , g_{zz} , A_{xx} , A_{zz} , and β

the non-coincidence effects on an EPR powder spectrum become obvious if two (or more) tensors have relevant and comparable anisotropies between them

Effects of non-coincidence of tensors g and A on a powder spectrum:

- the spectrum contains "too many lines"
 the intensity and position of the spectral lines is not that expected on the basis of simple considerations
- 3) it is not possible to simulate the spectrum assuming rhombic or axial symmetry

non-coincidence of g- and A-tensor principal axes

low-symmetry features

low symmetry

Local inhomogeneity and local symmetry probes

strain broadening and smearing of EPR features

J. Phys. Chem. B 2000, 104, 6568-6575

g-strain

Powder samples come with a distribution of local surroundings (conformations) of the paramagnetic centers

For EPR this means that a paramagnetic center, which has a slightly different structural surrounding, exhibits a slightly different *g*-value.

This structural inhomogeneity is a source of the so called *g-strain*, and is reflected in the spectroscopy in the form of an inhomogeneous line shape.

This normally results in a change from a *Lorentzian* to *Gaussian* line shape. An important consequence of this *g*-strain effect is that the line width is in general, also anisotropic.

hydrated MnK-A zeolite (0.1 wt.% Mn)

strain broadening and smearing of EPR features

g-strain

In magnetically diluted systems g-strain (but also A- and D-strains) leads to apparent m_1 and frequency dependence of the hyperfine (and fine) linewidths (σ):

$$\sigma_{v}^{2} = \left(\sum_{i=\mathrm{x},\mathrm{y},\mathrm{z}} \left\{ \sigma_{R_{i}}^{2} \left[\frac{\Delta g_{i}}{g_{i}} v_{0}(B) + \Delta A_{i} m_{\mathrm{I}} \right]^{2} \right\} g_{i}^{2} l_{i}^{2} \right) / g^{2}$$

 σ_{Ri} are the residual linewidths due to unresolved metal and (or) ligand hyperfine splitting, homogeneous broadening and other sources;

 Δg_i and ΔA_i are the widths of the Gaussian distributions of the g and A values

hydrated MnK-A zeolite (0.1 wt.% Mn)

J. Am. Chem. Soc., 1996, 118, 9615–9622.

strain broadening and smearing of EPR features

g-strain refers to anisotropic broadening of the linewidths owing to distribution of g-values caused by small local inhomogeneity (slight variations in the orientation of the Mo(V) surface centers, heteroleptic various surface ligands, geometric strains, surface strains). Also, broadening of the g-values depends on the microwave frequency. If the line broadening were determined only by *e.g.* unresolved hyperfine coupling (which are field-independent), then the line widths would also be field independent, but they often are not.

use of local paramagnetic probes

local symmetry probe (g tensor)

$$g_{ij} = g_e \delta_{ij} = 2\lambda$$

 λ – stała sprzężenia spinowo-orbitalnego

 $\Gamma_0 \times \Gamma_L \times \Gamma_n \subset$ totally symmetric representation Γ_A

local symmetry probe

axial distortion

local symmetry probe

differentiation between d¹ and d⁹ configurations

local symmetry probe

Analysis of EPR spectra of powder samples requires:

- **1. computer simulations**
- **2.** accounting for EPR parameters strains
- **3. accounting for low-symmetry effects**
- 4. checking for presence of off-axis extra features

Useful experiments and procedures

adsorption of probe molecules isotopic substitution multifrequency measurements use of hyperfine techniques

References and further reading

- 1. John A. Weil, James R. Bolton, *Electron Paramagnetic Resonance: Elementary Theory and Practical Applications*, 2007 John Wiley & Sons, Inc.
- 2. F. Mabbs, D. Collison, *Electron Paramagnetic Resonance of d Transition Metal Compounds*, Elsevier Amsterdam, 1992
- 3. M. Brustolon, E. Giamello, (Ed), *Electron Paramagnetic Resonance. A Practitioner's toolkit.* 2009, John Wiley & Sons, Hoboken, 2009.
- 4. J. R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Oxford University Press, Oxford, 1990.
- 5. P. Pietrzyk, Z. Sojka, E. Giamello, *in Characterization of Solid Materials and Heterogeneous Catalysis From Structure to Surface Reactivity*, M. Che, J. C. Védrine (Ed), Wiley-VCH, Weinheim, 2012, p. 343.
- 6. P. Pietrzyk, T. Mazur, Z. Sojka, Local Structural Characterisation: Inorganic Materials Series, John Wiley & Sons, 2014, p. 225.
- 7. Ph. Rieger, Electron Spin Resonance. Analysis and Interpretation., RSC Publishing, Cambridge, 2007.
- 8. R. S. Drago, Physical methods for chemists, Saunders College Pub., 1992
- 9. I.V. Ovchinnikov, V. N. Konstantinov, J. Magn. Reson., 1979, 32, 179.
- 10. B. M. Peake, Ph. H. Rieger, B. H. Robinson, J. Simpson, J. Am. Chem. Soc. 1980, 102, 156-163; W. E. Geiger, Ph. H. Rieger, B. Tulyathan, M. D. Rausch, J. Am. Chem. Soc. 1984, 106, 7000-7006.
- 11. A. Kreiter, J. Hatermann, J. Magn. Reson. 1991, 93, 12-26

Thanks for your attention!

www.eprschool.ceitec.cz

Case study 1

LCAO analysis of *g*- and *A*- tensors Cu(II)-doped KZnClSO₄×3H₂O

local symmetry probe – case study

local symmetry probe – case study

For the D_{2h} local point group symmetry of the hosting site (Figure 11b) the copper 3*d* orbitals can be mixed with 4*s* orbital and ligand-based *L* orbitals, resulting in the following molecular orbitals responsible for the observed SH parameters:

$$\Psi(A_{g}) = \alpha (ad_{x^{2}-y^{2}} + bd_{z^{2}} + c_{s}s) - \alpha'L_{1} \qquad a^{2} + b^{2} + c_{s}^{2} = \Psi(A_{g}) = \alpha_{1} (ad_{z^{2}} - bd_{x^{2}-y^{2}} + c_{s}s) - \alpha_{1}'L_{2} \Psi(B_{1g}) = \beta_{1}d_{xy} - \beta_{1}'L_{3} \Psi(B_{2g}) = \beta d_{xz} - \beta'L_{4} \Psi(B_{3g}) = \beta'd_{yz} - \beta''L_{5}$$

For the A_g ground state symmetry the principal \boldsymbol{g} and \boldsymbol{A} values are given by:

$$g_{zz} = g_e - 8\alpha^2 \beta_1^2 a^2 \frac{\lambda}{E_{xy}}$$

$$g_{yy} = g_e - 2\alpha^2 \beta^2 (a - \sqrt{3}b)^2 \frac{\lambda}{E_{xz}}$$

$$g_{xx} = g_e - 2\alpha^2 \beta^2 (a + \sqrt{3}b)^2 \frac{\lambda}{E_{yz}}$$

$$A_{zz} = \alpha^2 c_s^2 A_{4s} + P \left[-\alpha^2 \kappa + \Delta g_{zz} - \frac{4}{7} \alpha^2 (a^2 - b^2) + \frac{1}{14} \frac{3a + \sqrt{3}b}{a - \sqrt{3}b} \Delta g_{yy} + \frac{1}{14} \frac{3a - \sqrt{3}b}{a + \sqrt{3}b} \Delta g_{xx} \right]$$

$$A_{yy} = \alpha^2 c_s^2 A_{4s} + P \left[-\alpha^2 \kappa + \Delta g_{yy} + \frac{2}{7} \alpha^2 (a^2 - b^2 + 2\sqrt{3}ab) - \frac{\sqrt{3}}{14} \frac{b}{a} \Delta g_{zz} - \frac{1}{14} \frac{3a - \sqrt{3}b}{a + \sqrt{3}b} \Delta g_{xx} \right]$$

$$A_{xx} = \alpha^2 c_s^2 A_{4s} + P \left[-\alpha^2 \kappa + \Delta g_{xx} + \frac{2}{7} \alpha^2 (a^2 - b^2 - 2\sqrt{3}ab) + \frac{\sqrt{3}}{14} \frac{b}{a} \Delta g_{zz} - \frac{1}{14} \frac{3a + \sqrt{3}b}{a - \sqrt{3}b} \Delta g_{yy} \right]$$

Input data

 $\lambda = -829 \text{ cm}^{-1}$ is the SOC constant, $P = 0.036 \text{ cm}^{-1}$ and $\kappa = 0.43$ is the Fermi contact parameter of the free Cu²⁺ ion, E_i represents energy separation between A_g ground state and the 3*d* levels ($E_{xy} = 11\ 000\ \text{cm}^{-1}$, $E_{xz} = 11\ 700\ \text{cm}^{-1}$, $E_{xz} = 13\ 100\ \text{cm}^{-1}$) whereas the $a^2c_s^2A_{4s}$ term gives direct contribution of the 4*s* orbital to the isotropic hyperfine coupling.

Calculation results

 a^2 = 0.947, α^2 = 0.93 and κ = 0.284 β_1^2 = 0.80, β^2 = 0.80 and β'^2 = 0.67

 $|\text{SOMO}\rangle = 0.96(0.97 | x^2 - y^2 \rangle + 0.03 | z^2 \rangle,$

influence of the $|x^2-y^2\rangle/|z^2\rangle$ hybridization degree on the *g* tensor values

Case study 2

MgO supported superoxide radicals H superhyperfine structure and extra lines

MgO superoxide surface species

J. Chem. Phys. 2002, 116, 4266
Isotopomers of O_2^- for two equivalent ¹⁷O nuclei (I = 5/2)

Species	¹⁶ O ¹⁶ O	¹⁶ O ¹⁷ O ¹⁷ O ¹⁶ O	¹⁷ O ¹⁷ O
Concentration	(1 - x) ²	2x(1 - x)	x ²
Number of lines	1	6	11
Distribution of lines		5/2 3/2 1/2 -1/2 -3/2 -5/2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\mathbf{x} - {}^{17}\mathbf{O}$ enhancement level

¹⁶O and ¹⁷O isotopomeres of O_2^{-1}

variable enrichment approach for controlling the isotopomer composition

simplification of the spectra through suppression of the speciation and controlled enrichment

¹⁶O¹⁷O⁻ isotopomer

identification of extra features

5 extra lines corresponding to additional extremes in $B_r(\theta,\phi)$ for $m_1 = 3$, 5/2, 2, 3/2, 1

superhyperfine and hyperfine structure ¹⁷O₂^{-/}H⁺ on MgO

 $C_{2v} \rightarrow$ orthorhombic symmetry $\rightarrow g$ and ${}^{O}A$ axes coincident

 $\textbf{C}_{s} \rightarrow \text{monoclicic symmetry} \rightarrow \textbf{g} \text{ and } {}^{H}\textbf{A} \text{ axes noncoincident}$

accounting for the H-shf

rotation formula of Hoffman (J.Mag.Res. 1984)

$${}^{H}A_{x'} = {}^{H}A_{x}$$

$${}^{H}A_{y'} = \left(\frac{{}^{H}A_{y}^{2} - ({}^{H}A_{y}^{2} + {}^{H}A_{z}^{2})\sin^{2}\beta}{1 - 2\sin^{2}\beta}\right)^{1/2} {}^{H}A_{z'} = \left(\frac{{}^{H}A_{z}^{2} - ({}^{H}A_{y}^{2} + {}^{H}A_{z}^{2})\sin^{2}\beta}{1 - 2\sin^{2}\beta}\right)^{1/2}$$

$$\beta = \arcsin\left(\frac{{}^{H}A_{z}^{2} - {}^{H}A_{x}^{2}}{{}^{H}A_{z}^{2} - {}^{H}A_{x}^{2}}\right)^{1/2}$$

$$A_{\rm D} = {}^{\rm H}A_{\parallel} - a_{\rm iso} = g_{\rm e}\mu_{\rm B}g_{\rm H}\mu_{\rm H}(3\cos^2\phi - 1)/r^3$$

 $r = 0.36 \text{ nm}$
 $r_{\rm calc.} = 0.38 \text{ nm}$

 β = 39°, ^H A_{\parallel} = 3.2 MHz, ^H A_{\perp} = -1.98 MHz

