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1. Angular momentum. 
 
The spin angular momentum ħS  is characterized by states |𝑠 𝑚𝑠⟩ that are 
eigenstates of S 2 and one of the components of S , say 𝑆𝑧: 
 

S 2 |𝑠 𝑚𝑠⟩ = 𝑠(𝑠 + 1)|𝑠 𝑚𝑠⟩ 
𝑆𝑧 |𝑠 𝑚𝑠⟩ = 𝑚𝑠|𝑠 𝑚𝑠⟩ . 

 
In cases where we need to know how 𝑆𝑥 or 𝑆𝑦 operate on a spin state, we make use 

of the so-called ladder operators 𝑆+ or 𝑆− ∶  𝑆 ∓ ≡ 𝑆𝑥 ∓ 𝑖𝑆𝑦 . 

 
In this exercise we show that 
 

 𝑆 ∓|𝑠 𝑚𝑠⟩ = 𝜆 ∓|𝑠 𝑚𝑠 ∓ 1⟩ , 
 
with 

𝜆 ∓ = √𝑠(𝑠 + 1) − 𝑚𝑠(𝑚𝑠 ∓ 1) . 
 

 

Do so for 𝑆+ step by step. 
a. Show that 𝑆+ is the Hermitian conjugate of 𝑆− (and vice versa). 
b. Show that the commutator of 𝑆𝑧 and 𝑆+ equals 𝑆+ . 
c. Show that 𝑆+|𝑠 𝑚𝑠⟩ is an eigenstate of 𝑆𝑧 with eigenvalue (𝑚𝑠 + 1). 
d. Express 𝑆−𝑆+ in terms of 𝑆2 and 𝑆𝑧. 
e. Calculate the expectation value of 𝑆−𝑆+ in the state |𝑠 𝑚𝑠⟩ in two ways using 

the result of (c) and (d), respectively, and find 𝜆+ . 
  



 
 

2. Coupling of two spin ½ systems: a biradical. 
 
The total spin angular momentum ħS = ħs1 + ħs2 .  

a. Express the eigenstates as ket vectors in terms of the quantum numbers of 
the total spin. 

b. Express these states in terms of the eigenstates |1/2 1/2⟩ and |1/2  −1/2⟩ of 
the individual spins. 
 

Suppose the electron spins are in a magnetic field (0, 0, 𝐵) and have an exchange 
interaction J. The spin Hamiltonian is given by  
 

𝐻 = 𝛽𝑒𝐵(𝑔1𝑠1𝑧 + 𝑔2𝑠2𝑧) + 𝐽s1. s2 . 
 

c. Calculate the energies of the spin states and draw the energy-level diagram 
for two limiting cases: 

  
- Weak coupling |𝐽| ≪ (|𝑔1 − 𝑔2|)𝛽𝑒𝐵 
- Strong coupling |𝐽| ≫ (|𝑔1 − 𝑔2|)𝛽𝑒𝐵 

 
d. Indicate for both situations the allowed EPR transitions in the energy-level 

diagram. 
  



 
 

3. Spin Hamiltonian. 
 
In the spin Hamiltonian only spin operators occur, while the spatial distribution of 
the electron (and nuclear) spin density is absorbed in tensorial magnetic 
parameters. Here we will illustrate this concept through derivation of the explicit 
expression of the zero-field splitting tensor D for the magnetic dipole-dipole 
interaction of two electron spins in a triplet state (S=1). We take 𝑔1 = 𝑔2 = 𝑔, a 
proper assumption for most organic triplets. The corresponding Hamilton operator 
is  

𝐻𝑧𝑓𝑠 =
𝜇0

4𝜋
𝑔2𝛽𝑒

2 {
s 1. s 2

𝑟3
−

3(s 1.r)(s 2.r)

𝑟5
} , 

 
where r represents the vector joining the two electrons.  

a. Prove the following operator relations for 𝑠 =
1

2
 : 

 

𝑠𝑥𝑠𝑦 = −𝑠𝑦𝑠𝑥 = 𝑖
2⁄ 𝑠𝑧 , 

 

𝑠𝑥
2 = 𝑠𝑦

2 = 𝑠𝑧
2 = 1

4⁄  1 . 

 
b. In terms of the total spin angular momentum ħS = ħs1 + ħs2 , prove the 

following operator relations: 
 

𝑆𝑗
2 = 2𝑠1𝑗𝑠2𝑗 + 1

2⁄ 1 , 

 
(𝑆𝑗𝑆𝑘 + 𝑆𝑘𝑆𝑗) = 2(𝑠1𝑗𝑠2𝑘 + 𝑠1𝑘𝑠2𝑗), 

for j, k = x,y,z . 
 

c. Rewrite the Hamilton operator in terms of the total spin angular momentum.  
The result can be identified with the spin Hamiltonian 𝐻𝑧𝑓𝑠 = S̃ D S . To do so, 

we have to take the expectation value of the spatial observables, which yields 
the following expression for the elements of the D tensor: 

 

𝐷𝑗𝑘 =
1

2

𝜇0

4𝜋
𝑔2𝛽𝑒

2 〈 
𝛿𝑗𝑘𝑟2 − 3𝑗𝑘

𝑟5
 〉 . 

  



 
 

4. The EPR spectrum of a nitroxide radical at 9.5 and 275 GHz. 
 
Below two EPR spectra are represented for the nitroxide spin label MTSL: one at 9 
GHz (X-band) for a solution at room temperature, and the other at 275 GHz for a 
frozen sample at low temperature. In the spectra the effect of the nuclear spin of 
nitrogen (I=1) is visible. 
The spectrum at 9 GHz extends over about 3.5 mT and consists of three peaks and 
small extra features on both sides of each peak. The spectrum at 275 GHz extends 
over 40 mT, and small extra features are visible at about 9.83 and 9.85 T.  
 

a. Which spin Hamiltonians describe the spectra? Provide a qualitative 
interpretation of the spectra. 

b. Speculate on the origin of the extra features in both spectra. 
c. Simulate the spectra with Easyspin. 
d. Use Easyspin to investigate the dependence of the EPR spectrum of MTSL on 

the rotational freedom of the spin label in solution, both at 9 and 275 GHz. 
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5. High-spin Co(III). 
 

Consider high-spin Co(II), a 3𝑑7 electron configuration with 𝑆 =
3

2
 . In zero-field, the 

magnetic sublevels form two degenerate doublets (so-called Kramers doublets) 
separated by the zero-field splitting. 

a. Determine the matrix representation of the spin Hamiltonian in zero-field in 
the basis of the eigenstates of 𝑆𝑧 : 
|3/2  3/2⟩, |3/2  1/2⟩, |3/2  −1/2⟩, |3/2  −3/2⟩ . Work in the principal axes 
system x, y, z of the zfs-tensor D. 

b. Assume TrD = 0 and define 𝐷 ≡
3

2
𝐷𝑧𝑧 and 𝐸 ≡

1

2
(𝐷𝑥𝑥 − 𝐷𝑦𝑦). Determine the 

energies of the Kramers doublets in terms of D and E, and the corresponding 
eigenstates. 

 
The eigenstates can be written as 
 

cos 𝜃  |3/2  ±3/2⟩ + sin 𝜃 |3/2  ∓1/2⟩ 
 

cos 𝜃  |3/2  ±1/2⟩ − sin 𝜃  |3/2  ∓3/2⟩ , 
 

where the angle θ is given by 𝑡𝑔 2𝜃 = √3 𝐸/𝐷 .  
 

c. Suppose 𝒈 is anisotropic with principal axes parallel to those of D. Calculate 
for negative D the effect of a magnetic field on the energy of the lower 
doublet. When is it justified to neglect the upper doublet? 

d. Show that the result obtained under (c) is equivalent to that for an s=1/2 
system with effective 𝑔-values. Express the effective 𝑔-values in terms of the 
true 𝑔-values and θ . 
 

  



6. Density matrix. 
 
Consider an isolated spin ½ system in the state |𝜒⟩ = 𝑐1|1⟩ + 𝑐2|2⟩ , where |1⟩ and 
|2⟩ refer to the orthonormal eigenstates |1/2  1/2⟩ and |1/2  −1/2⟩, and |𝑐1|2 +
|𝑐2|2 = 1.  

a. The density operator 𝜌 = |𝜒⟩ ⟨𝜒| . Set up the density matrix ρ  in the basis 
|1⟩ , |2⟩ and express the expectation values of 𝑆𝑥, 𝑆𝑦, and 𝑆𝑧 in terms of the 

elements of the density matrix. Remember 〈𝐴〉 = Tr(ρA) and make use of the 
Pauli matrices. 

 
For an ensemble of spin ½ systems in a pure state, i.e., the coefficients 𝑐1 and 𝑐2 are 
the same for all spins, the description is equivalent to that for an isolated spin. Also 
in this case the system can be described just as well by the density operator as by 
the state vector. The density operator has advantages. First, the two state vectors 
|𝜒⟩ and 𝑒𝑖𝜃|𝜒⟩ describe the same physical state, and the density operator eliminates 
the arbitrary phase factor. Secondly, expressions like the expectation value of an 
observable, while quadratic in the state vector, are linear in the density operator. 

b. If not obvious, check both assertions. 
 
Subsequently we consider a non-pure case, a so-called mixed state, which 
corresponds to an incoherent superposition of states with different coefficients 
𝑐1 and 𝑐2. An important example concerns a macroscopic system at thermal 
equilibrium, in other words a statistical mixture of states |1⟩ and |2⟩. The density 
operator becomes 

𝜌 = 𝑝1|1⟩ ⟨1| + 𝑝2|2⟩ ⟨2|, 
 
where 𝑝1 and 𝑝2 are the probabilities of spins being in the two states as given by the 
Boltzmann distribution. 

c. Set up the density matrix and show that it can be written as 
 

𝜌 = ½1 + ½(𝑝1 − 𝑝2)S𝑧. 
  
  



7. A two-spin system and the evolution of the density matrix: electron-
spin-echo spectroscopy of radical pairs. 

 
(Adapted from the tutorial by Peter Hore, University of Oxford, at the 2010 Summer 
School on Advanced EPR Spectroscopy in Konstanz)   
 
Consider a two-pulse electron-spin-echo experiment on a weakly coupled pair of 
electron spins A and B (𝑆 = 𝑆𝐴 + 𝑆𝐵) with the spin Hamiltonian 
 

𝐻 = 𝜔𝐴𝑆𝐴𝑧 + 𝜔𝐵𝑆𝐵𝑧 + 𝜔𝑑𝑑𝑆𝐴𝑧𝑆𝐵𝑧 + 𝐽𝑆𝐴𝑧𝑆𝐵𝑧 . 
 
The eigenstates and the corresponding energies are: 
 

|1⟩ = |𝛼𝐴𝛼𝐵⟩          𝜀1 = +½(𝜔𝐴 + 𝜔𝐵) + ¼(𝐽 + 𝜔𝑑𝑑) 
 

|2⟩ = |𝛼𝐴𝛽𝐵⟩          𝜀2 = +½(𝜔𝐴 − 𝜔𝐵) − ¼(𝐽 + 𝜔𝑑𝑑) 
 

|3⟩ = |𝛽𝐴𝛼𝐵⟩          𝜀3 = −½(𝜔𝐴 − 𝜔𝐵) − ¼(𝐽 + 𝜔𝑑𝑑) 
 

|4⟩ = |𝛽𝐴𝛽𝐵⟩          𝜀4 = −½(𝜔𝐴 + 𝜔𝐵) + ¼(𝐽 + 𝜔𝑑𝑑). 
 
The resonance frequencies 𝜔𝐴 and 𝜔𝐵 correspond to isotropic Zeeman and 
hyperfine interactions, J is the exchange and 𝜔𝑑𝑑  the dipolar coupling of the electron 
spins. The non-secular parts of the electron-electron interactions have been omitted. 
 
Suppose the initial density matrix, at t=0, is diagonal in the basis of eigenstates of H : 
 

ρ(0) = (

𝑝1 0
0 𝑝2

0 0
0 0

0 0
0 0

𝑝3 0
0 𝑝4

) , 

 
where the 𝑝𝑗 ’s (j=1, 4) are the fractional populations of the four eigenstates. 

 
We consider the pulse sequence  

𝛽𝑥 − 𝜏 − 𝜋𝑥 − 𝜏 − echo , 
 
where the microwave pulses with phase x and flip-angles β and π are separated by a 
time interval τ. The pulses are assumed to be hard so that off-resonance effects can 
be ignored. We calculate the echo amplitudes 〈𝑆𝑥〉 and 〈𝑆𝑦〉 detected along the x- and 

y-axes at time t=2τ. 
a. Let 𝜌(0+), 𝜌(𝜏−) and 𝜌(𝜏+) represent the density operator at times 

immediately after the β-pulse, just before the π-pulse and immediately after 
the π-pulse. Show that solving the Liouville-von Neumann equation for the 
time interval 0 to 0+ yields 



 
𝜌(0+) = exp(−𝑖𝛽𝑆𝑥) 𝜌(0) exp(+𝑖𝛽𝑆𝑥). 

 
b. Express in a similar way the evolution of the density operator from 0+ to 𝜏− , 

from 𝜏− to 𝜏+ , and from 𝜏+ to 2τ. Combination of these results yields the 
evolution of the density operator from time 0 to time 2τ. 

c. Determine the matrix representations in the basis of eigenstates of H of the 
following operators: 

𝐻, exp(±𝑖𝐻𝜏) , 𝑆𝑥, 𝑆𝑦, exp(±𝑖𝛽𝑆𝑥). 

 
d. Combine all results to calculate the echo amplitudes 〈𝑆𝑥〉 and 〈𝑆𝑦〉 detected 

along the x- and y-axes at time t=2τ. Hopefully you obtain: 
 

〈𝑆𝑥〉(2𝜏) = ½(𝑝1 − 𝑝2 − 𝑝3 + 𝑝4) sin2𝛽 sin(𝐽 + 𝜔𝑑𝑑)𝜏 
 

〈𝑆𝑦〉(2𝜏) = (𝑝1 − 𝑝4) sin𝛽 cos(𝐽 + 𝜔𝑑𝑑)𝜏 

 
The matrix algebra is pretty tedious if done by hand. Alternatively, make use 
of, for example, Mathematica. 
 

With the two microwave pulses having phase x, the echo is normally formed along 
the y-axis. The y-echo is therefore referred to as the “in-phase” echo and the x-echo 
as the “out-of-phase” echo. Both echoes are found to be modulated at the frequency 
of the electron-electron coupling. 

e. Comment on the dependence of the echo amplitudes on the flip-angle β and 
the mutual phase shift of the echoes along x and y. 

f. Comment on the echo amplitudes for 
- a spin system in thermal equilibrium at t=0 (assuming the high-
temperature approximation, 𝑘𝐵𝑇 ≫ ħ𝜔𝐴 ≈ ħ𝜔𝐵) 
- a spin-correlated radical pair formed at t=0 in a pure singlet state. 
 
 
 
 


